
Implementation of an Information Retrieval System

Penjan Antonio Eng Lim

Department of Computer Science and Engineering, Chungnam National University

daehanlim@o.cnu.ac.kr

ABSTRACT
In an era dominated by digital content, an Information Retrieval System embodies capabilities
that enable the storing, retrieving, and managing of data elements. Data elements can extend
to cover a range of formats including, but not limited to, textual content (with the possible
inclusion of numerical and temporal data), imagery, audio, video, and various other multimedia
constructs. This project explores the design and execution of an Information Retrieval System,
adept in boolean and ranked retrieval methodologies. The design begins with the building of a
uni-gram inverted index using the Single-Pass in Memory Indexing (SPIMI) algorithm. The
system then navigates complex Boolean queries and conducts a ranked retrieval process that
can handle free-text queries, ranking the results based on their relevance to the query.

1. INTRODUCTION

Information retrieval (IR) is finding material
(usually documents) of an unstructured nature
(usually text) that satisfies an information need
from within large collections (usually stored on
computers) [1]. It is the practice of procuring
relevant data resources that cater to a specific
information requirement from a vast pool of
such resources. This retrieval can hinge on
metadata or be driven by full-text or additional
content-oriented indices. The process of
Information Retrieval starts when a system
receives a user query. Its primary concern lies
in discovering and prioritizing documents
aligning with the user’s information demands [2].

One of the first major concepts in IR is the
inverted index. It is a structure that uses a
dictionary of terms and a list of postings for each
term in order to offer an efficient path to access
relevant data. This index significantly enhances
the speed and effectiveness of search
mechanisms within large document corpora,
representing a fundamental element in modern
search engines. One practical implementation

of the inverted index is the Single-Pass in
Memory Indexing (SPIMI) method, an approach
specifically designed to handle the indexing of
large-scale datasets. This method, known as
SPIMI-Invert, breaks down large amounts of
data into manageable chunks, creating partial
indices in memory that are subsequently
merged into the final inverted index [2].

Another potent instrument in Information
Retrieval is Boolean retrieval. It employs
Boolean logic—using operators like 'AND', 'OR',
and 'NOT'—to refine user queries. This
methodology permits intricate and precise
search requirements, enhancing the capacity to
pinpoint desired information resources within a
vast dataset [1].

Lastly, we delve into ranked retrieval,
particularly employing the TF-IDF (Term
Frequency-Inverse Document Frequency)
weighting scheme. Unlike Boolean retrieval,
which delivers an unranked set of matching
documents, ranked retrieval arranges the
documents in order of relevance. TF-IDF
assigns a weight to each term in a document

that reflects its importance, which is then used
to rank documents for a given query. This
technique has been fundamental in Information
Retrieval, enabling users to sift through large
collections of documents swiftly and effectively.

This paper describes the process of building a
simple indexing and Information Retrieval
System using the concepts explained above.
Through a comprehensive analysis of the
system's functionality, the paper aims to
elucidate the power and simplicity of these
techniques within the context of IR and to
illustrate how these methods facilitate the
retrieval of relevant documents from a large
corpus based on a given user query.

The rest of this paper is arranged as follows:
Section 2 elaborates on the methodologies
applied, Section 3 examines the system's
results, and Section 4 encapsulates the key
findings and conclusions.

2. METHODOLOGY

In the realm of IR, multiple strategies can be
employed to ensure effective and efficient
extraction of data from large repositories. This
section highlights the development and usage
of two critical strategies, namely Boolean
retrieval and ranked retrieval, building upon the
foundation of an inverted index. The section
presents a detailed description of the
methodology used in developing a simple yet
effective IR system. In order to provide
comprehensive and accurate results, the
methodologies chosen rely on several Python
packages such as NLTK [3] for stopword
removal, and SpaCy [4] for sentence
tokenization.

2.1 Inverted Index
In essence, an inverted index is a dictionary-like
data structure that allows for efficient keyword
searches. Each term in the index has a
corresponding list of postings, which are
essentially the document IDs where the term

appears. This structure is instrumental in
enhancing the search mechanisms' speed and
effectiveness within extensive document
corpora, thereby playing a pivotal role in modern
search engines.

The construction of the inverted index for this
project utilizes a variant of the SPIMI-Invert
(Single-Pass in Memory Indexing) algorithm.
SPIMI-Invert is an algorithm tailored to
efficiently index large datasets by breaking the
data into manageable chunks, creating partial
indices in memory that are subsequently
merged into the final inverted index. This
method has been adjusted to account for the
ample free memory available in the current
context, eliminating the need to write the index
and dictionary to disk, as required in the original
algorithm. This modification provides an
improvement in terms of speed and efficiency in
the indexing process, allowing for rapid access
to the dataset and the generation of relevant
search results.

During the index creation process, each
document is first read and preprocessed by
removing punctuations, numbers, URLs, and
other unnecessary special characters,
normalizing the text (i.e., converting all
characters to lowercase), and performing any
additional preprocessing steps required to
prepare the data for indexing. The document is
then segmented into sentences using the
SpaCy [4] library's sentencizer. Each sentence
is also preprocessed and then split into
individual tokens. These tokens are then filtered
to remove stopwords (commonly used words
that are filtered out due to their lack of
meaningful content). Finally, these tokens are
added to the postings list of each corresponding
term in the inverted index, along with the
document ID from which they originated. The
result is a dictionary of words in which, for each
term, we have a list that records which
documents the term occurs in, also referred to
as a postings list (or inverted list).

Once the inverted index is constructed, it is
utilized in the retrieval process to implement two
major methodologies: Boolean retrieval and
ranked retrieval.

2.2 Boolean retrieval

Boolean retrieval is an integral part of the
Information Retrieval System, allowing for a
streamlined, precise, and versatile approach to
document search. The method employs
Boolean logic to offer flexibility and specificity in
user queries. By enabling intricate search
requirements, it enhances the capability to
pinpoint desired information resources within a
vast dataset.

The Boolean retrieval system in this paper is
capable of managing a diverse range of queries,
including ̀ X OR Y`, ̀ X AND Y`, ̀ X AND NOT Y`,
and `X OR NOT Y`, as well as complex
combinations of these elementary forms. The
implementation for this was achieved through a
three-step process: parsing the query,
processing the 'NOT' operator, and finally,
combining postings.

To begin with, each search query received by
the system is parsed to separate and identify its
individual components. The query first
undergoes the equivalent preprocessing phase
that was applied to each document during the
construction of the index, as detailed previously.
This ensures that the tokens derived from the
query match those that are stored in the index.
This consistency allows for accurate matching
between the query terms and the terms in the
documents, thereby improving the effectiveness
of the retrieval process. The query is then split
into individual tokens, distinguishing between
Boolean operators (OR, AND, NOT) and search
terms. If the token is a search term, it is mapped
to its corresponding postings list from the
inverted index, or an empty set if the term does
not exist in the index.

Following the parsing, the 'NOT' operator is
processed separately, as it represents a

negation operation, which essentially removes
documents from consideration. To implement
this, the function replaces each `NOT Y` in the
parsed query with the set of documents that do
not contain term Y. This is achieved by
subtracting the postings list of term Y from the
set of all document IDs.

After the 'NOT' operators have been processed,
the remaining operators 'AND' and 'OR' are
dealt with by combining the postings of terms
using the corresponding Boolean operations.
For each 'AND' operation, the intersection of the
postings of the two terms is computed, ensuring
that only the documents that contain both terms
are kept. For each 'OR' operation, the union of
the postings is computed, retaining any
document that contains either of the terms.

The result of the Boolean retrieval process is a
set of document IDs that satisfy the conditions
specified by the original user query. The system
then retrieves these documents for the user to
review.

This Boolean retrieval system, while simple, is
highly effective and fundamental in the field of
Information Retrieval. It provides a powerful
method for sifting through a large corpus based
on user-defined criteria, illustrating the
importance of logical operators in data search
and retrieval.

2.3 Ranked retrieval

Ranked retrieval adds another dimension to
Information Retrieval by sorting the resulting
documents according to their relevance to the
user's query. The ranking of retrieved
documents is particularly useful when dealing
with large sets of data where a binary Boolean
retrieval might return an overwhelming number
of documents. By ordering the documents by
their relevance score, the ranked retrieval
system ensures that the most relevant
documents are presented first to the user, thus
making the information search more efficient
and user-friendly.

The scoring mechanism used for ranking in
this study is the TF-IDF (Term Frequency-
Inverse Document Frequency) scheme. TF-
IDF is a statistical measure that reflects how
important a word is to a document within a
corpus. The TF-IDF score increases
proportionally to the number of times a word
appears in the document (𝑡𝑡𝑡𝑡) and is offset by
the frequency of the word in the corpus (𝑑𝑑𝑡𝑡). It
combines the definitions of term frequency and
inverse document frequency to produce a
composite weight for each term in each
document. This weight is calculated as follows:

𝑤𝑤𝑡𝑡,𝑑𝑑 = log�1 + 𝑡𝑡𝑡𝑡𝑡𝑡,𝑑𝑑� ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑁𝑁/𝑑𝑑𝑡𝑡𝑡𝑡) (1)

where t denotes the term and d denotes the
document. In the project, Laplace smoothing is
applied when calculating the second term in
Equation (1).

As for the ranking strategy, Term-At-A-Time
(TAAT) retrieval was employed. In this
approach, the query is processed one term at
a time, scoring each document for each term
before moving on to the next term in the query.

The system first computes the term weights for
the documents using Equation (1). For each
document, it computes a vector where each
element represents the term weight.

Just like in Boolean retrieval explained
previously, the input query is preprocessed
and tokenized similarly to the documents. The
system then computes the term weights for the
query similarly to the documents.

With the weights calculated, the system
computes the scores for each document using
cosine similarity. Both the query and each
document are represented as vectors in a
space where each dimension corresponds to a
term from the query. The cosine of the angle
between each document vector and the query
vector is calculated, producing a score that
represents their similarity. A higher score
indicates that the document is more relevant to
the query.

Lastly, the system ranks the documents
according to these scores and returns the top
'K' documents, where 'K' is a user-defined
parameter that dictates how many top-scoring
documents should be returned. This method
enables the user to control the number of
results according to their needs. This process
is illustrated in Figure 1.

Figure 1: Cosine score calculation

The implementation of ranked retrieval with the
TF-IDF scoring mechanism enhances the
precision and utility of the information retrieval
system. It underscores the importance of
considering not only the presence of query
terms in a document but also their significance
in both the document and the entire corpus,
leading to a more nuanced and effective
retrieval of information.

3. RESULTS

The dataset used for the index construction and
system testing is the ‘stories’ dataset, sourced
from the TEXTFILES.COM archive. This
dataset consists of 466 stories written in English,
each belonging to various genres, stored in a
multitude of different file formats.

3.1 Index Construction

Table 1 presents a set of metrics encapsulating
various aspects of the constructed inverted
index and data. The first column presents the

number of unique terms in the index, also
known as the vocabulary size. The second
column reports the average number of terms
per document. This metric can hint at the
complexity and richness of the document
content. The third column presents the average
size of the postings lists. It represents the
average number of documents in which the
terms appear. The final column displays the
memory usage of the inverted index. This figure
is computed by calculating the amount of
memory (in bytes) consumed by the index
structure in memory. Memory usage provides a
crucial gauge of the computational efficiency of
the index.

of
unique
terms

Avg # of
tokens per
doc

Avg size of
postings lists

Mem
usage

49,189 2335 8 2.5
MB

Table 1: Statistics of index construction
<

As can be seen in the table, the memory usage
of the inverted index is relatively small, implying
that the index is efficient in terms of memory
consumption.
,

3.2 Boolean Retrieval Results
,

As part of the experimental evaluation, 20
Boolean queries on the retrieval system were
executed. The model returned results that align
closely with the intended information need
expressed in each query.

The first query tested was "depressed AND sad".
The system simply returned all documents that
contained both the terms "depressed" and "sad".
Out of the 466 documents in the corpus, 10
documents satisfied this condition and thus
were retrieved.

Then the query "depressed AND sad AND NOT
cool" was tested. Here, the system provided a
list of documents containing the term
"depressed" and “sad” as before, but this time
excluded those also containing the word "cool".

This time, the system only retrieved 6
documents, as 4 of the documents retrieved in
the previous query contained the word “cool”.

Another query "health OR disease" was
conducted to retrieve documents containing
either "health" or "disease". This broader query
correctly returned a larger set of 62 documents,
showcasing the system's ability to handle
queries with an 'OR' operator.

These tests demonstrated that the Boolean
retrieval system could accurately interpret and
respond to Boolean queries, effectively filtering
the document corpus based on the Boolean
operators applied.

3.3 Ranked Retrieval Results
,

For the 20 free-text queries executed on the
ranked retrieval system, results were ordered
based on their relevance score. One of the
queries utilized was "Bill Clinton and George
Bush". The system notably favored documents
that contained a balanced discussion of both
figures. For example, the top document is a
narrative featuring past U.S. presidents,
including Bill Clinton and George Bush. In the
narrative, the terms 'Bill Clinton' and 'George
Bush' appear in close proximity, indicating a
strong relationship to the search query.

Another example is "Depressed and sad", which
was one of the queries tested for Boolean
retrieval. On executing this query, the ranked
retrieval system generated a list of documents
that it deemed most relevant to the user's query.
The top-scoring document was a poem titled
"PEEL ME AWAY" by Bill DeClercq. This poem
creatively expresses themes of depression and
sadness through the metaphor of peeling layers
of an onion. The often recurrence of words such
as "depressed", and "sad", and the overarching
melancholic tone of the poem contributed to its
high relevance score.
,,,,,

3.4 Comparison between Boolean and
Ranked Retrieval

When comparing Boolean and ranked retrieval,
each has its unique strengths and applications.
Boolean retrieval excels in scenarios where the
user has a clear and specific information need
that can be expressed using Boolean operators.
It ensures that returned documents adhere
strictly to the user's stated criteria.

Ranked retrieval, on the other hand, is
particularly effective for more ambiguous or
exploratory queries. By ranking documents
based on a measure of relevance, it helps users
navigate large result sets and prioritizes
documents that most closely align with the
user's information needs. It is also able to
handle free text queries, which are more
suitable for less advanced users.

In the experiments, the Boolean queries
including ̀ AND` and the ranked retrieval queries
involving several terms resulted in different
outputs. In Boolean retrieval, we received a list
of all documents containing all the terms
between the `AND` keyword. However, ranked
retrieval provided a more refined list where
documents discussing terms in the query in-
depth were ranked higher.

4. CONCLUSIONS

Throughout this paper, we explored the process
of building an Information Retrieval System,
underlining the effectiveness of different
methodologies in retrieving pertinent
documents from a vast collection based on user
queries. The analysis covered several essential
concepts in the Information Retrieval domain,
including the inverted index, Boolean retrieval,
and ranked retrieval.

The system showed that an inverted index is a
powerful tool for efficient data retrieval,
significantly enhancing search mechanisms
within large corpora. The efficacy of both

Boolean and Ranked retrieval methods was put
to test through several query examples. While
Boolean retrieval excelled at retrieving precise
results based on strict user criteria, the Ranked
retrieval, utilizing the TF-IDF weighting scheme,
demonstrated a capacity to prioritize documents
based on relevance.

REFERENCES
[1] C. D. Manning, P. Raghavan, and H.

Schütze, Introduction to Information
Retrieval. Cambridge University Press,
2008.

[2] G. J. Kowalski, Information Retrieval
Systems: Theory and Implementation.
Springer, 2007.

[3] S. Bird, E. Klein, and E. Loper, Natural
language processing with Python:
analyzing text with the natural language
toolkit. O’Reilly Media, Inc., 2009. [Online].
Available: https://www.nltk.org/book/

[4] M. Honnibal and I. Montani, “spaCy 2:
Natural language understanding with
Bloom embeddings, convolutional neural
networks and incremental parsing,” 2017.

